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Hypercube Stacking: A Potts-Spin Model for 
Surface Growth 
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We present a deposition and evaporation model for surface growth under a 
solid-on-solid constraint. We generalize the Ising-spin representation of a two- 
dimensional surface by Bi6te and Hilhorst to a d-dimensional surface of a 
(d+l)-dimensional hypercubic lattice. The allowed surface configurations 
correspond to the (degenerate) ground states of a chirat d-state Potts model. We 
describe a vectorized multisite-coding implementation for the corresponding 
kinetic Potts-spin model for d =  2 and d =  3. For the d =  2 equilibrium surface 
our simulation results show excellent agreement with an exact analysis. 

KEY WORDS: Surface growth; Potts model; solid-on-solid constraint; 
multisite coding; vectorization. 

1. I N T R O D U C T I O N  

The simulation of models exhibiting critical phenomena invariably 
demands large system sizes in order to determine the proper finite-size 
scaling forms and extract the correct behavior in the thermodynamic limit. 
This is of particular importance in growth models where one is interested 
in the behavior of a surface growing in the presence of stochastic noise of 
various origins and wishes to characterize its degree of roughness by 
investigating possible scaling relations of the height fluctuations and 
correlations within the surface. This can be studied quantitavely by 
monitoring the development of the width w(L, t) (root-mean-square) of the 
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height fluctuations of a surface grown over a d-dimensional substrate of 
linear size L, where one normally begins with a flat surface at time t = 0. 

Among the models which have been studied in an attempt to under- 
stand surface roughening phenomena are diffusion-limited aggregation (1) 
(DLA), Eden growth, (2/ ballistic deposition, (3'4~ and the single-step 
model. (5'6~ The latter three types are simpler than DLA in the sense that 
they form compact clusters (their fractal dimension being equal to their 
Euclidean dimension, unlike DLA). Despite the simplicity of the growth 
mechanisms involved, specifying the surface behavior has proven to be a 
far from trivial problem. However, it has emerged from simulations of such 
models that the width is observed to obey a scaling form (3"7~ 

w(L,  t) ~ L;U( t /L  z) (1) 

where f ( x )  ~ const as x ---, o% and f ( x )  oc x :-/~ for x ~ 0. The former limit 
corresponds to the equilibrium width [implying w(t  >> L ~) ~ L~] ,  while the 
latter has w(t  ~ L-') ~ t ~/~, so that for small enough times t the surface does 
not "feel" the finite extent of the underlying substrate. Complementary to 
numerical investigations, further interest in these models was stimulated by 
the analytical work of Kardar et al., ~8~ who carried out a renormalization- 
group study of a nonlinear Langevin equation proposed to govern a 
universality class encompassing these growth models. Their analysis 
suggested that dc = 2 is the upper critical dimension of the substrate, above 
which there may be a nonequilibrium roughening transition between 
regimes of weak and strong noise, implying two different scaling regions: 
one of weak coupling with mean-field exponent r = 0, and one of strong 
coupling possessing a nontrivial roughness exponent ~ > 0. 

Accurate determination of the dynamic exponent/? = r is hampered 
by a number of factors. In growth from a flat surface one typically has an 
initial period of random deposition before entering the "true" growth 
regime with w ,-~ t P. In order that this growth period may be observed over 
a reasonable time range, the system size L must be large enough, since 
w(L,  t) will begin to level off for times approaching t ,,, O ( L  ~) before finally 
attaining its equilibrium value. Thus, we require 1 ~ w ~ L -~. Moreover, in 
some of our simulations, determination of/~ was further exacerbated by a 
slow crossover from transient growth with a smaller exponent to the 
asymptotic rate. This observation was only made possible due to the large 
system sizes which we were able to reach. 

Determination of the roughening exponent r is also a formidable task, 
as it involves ensuring that the growth has proceeded long enough to 
guarantee that the equilibrium width w(t  >> L z) is indeed being observed. 

Thus, it is clear that in order to accurately investigate such models, we 
must deal with systems of sufficient size and we must be able to simulate 
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them over a reasonable length of time. This is, of course, demanding on 
both computer memory and on cpu time. We present here a model and its 
numerical implementation which is extremely efficient in both of these 
respects. The model, which shall be described in the following section, is a 
deposition and evaporation model consisting of stacking (d+  1)-dimen- 
sional hypercubes above a d-dimensional substrate. It can be viewed as a 
variant of the Single-step model of Plischke et al. (6) (with the d =  1 case 
exactly coinciding with their model) and as such it can be very efficiently 
coded: it is only necessary to store the evolving surface--unlike, e.g., the 
Eden model, where, due to the presence of holes and overhangs, one typi- 
cally needs to store additional sites in the cluster and to have a separate list 
of surface sites. Furthermore, simple Potts variables (d-state in d dimen- 
sions) can be introduced, so that the whole model lends itself ideally to 
multisite coding techniques. This obviously enhances the size of the systems 
which can be dealt with in a given amount of computer memory and 
provides a substantial speedup factor, as all of the sites stored in a given 
computer word are updated simultaneously. We are not aware of any pre- 
vious f u l l  multisite-coded implementation of such growth models (previous 
efforts were at most only partly multisite coded, storing the lattice 
occupancy as single-bit variables). In addition, our algorithm is vec- 
torizable and the combination of these two features provides a very power- 
ful simulation tool on vector processors such as the Cray. Previous numeri- 
cal work could only use partially vectorizable code for the simulation of a 
single cluster. For example, Zabolitzky and Stauffer ~9/ were able to vec- 
torize their Eden model simulations, but at the expense of a systematic 
error which decreased with increasing perimeter size of the cluster. To our 
knowledge, it has not yet been possible in growth model simulations 
to combine single-bit handling with vectorization in a relatively 
straightforward manner. We were able to study significantly large system 
sizes: up to substrate sizes N = L 2 = l I 5 2 0 2  sites for d = 2 ;  and 
N = 2 L  3 = 2  x 1923 for d =  3. (Among all growth model simulations, the 
only systems of a comparable size were those studied by Zabolitzky and 
Stauffer, (9) who reached 81922 and 2563 in their Eden model simulations on 
a Cray-2, a computer with 16 times more memory than the one at our 
disposal, a Cray X-MP/416.) 

Our "hypercube-stacking" model, like other models under a solid-on- 
solid (SOS) restriction, enjoys the further advantage of a comparatively 
trivial "intrinsic width" (a quantity describing the behavior of the surface 
on short length scales(l~ This is in contrast to the situation in the Eden 
model, where holes and overhangs make it difficult and even ambiguous to 
define a single-valued height. The latter behavior often produces a large 
correction to scaling, ~1~ complicating the ensuing analysis. 
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In the next section we describe the model for d = 2 dimensions and its 
multisite-coding implementation. We then proceed to show how the model 
may be generalized to higher values of d, giving d = 3 as a further example, 
which we also have studied. Some details of the coding for this case are 
also provided. A test run of the d =  2 code against an exact result is given. 
Detailed results of our growth simulations and their analysis shall be 
presented elsewhere. (~2) 

2. THE T W O - D I M E N S I O N A L  M O D E L  

We consider the growth of a simple-cubic (SC) crystal growing above 
a (111) substrate plane as occupation of the SC lattice sites by atoms. A 
solid-on-solid (SOS) constraint on the surface atoms is always imposed: we 
define a surface atom as one having (strictly) less than six nearest 
neighbors and demand that each such surface atom occupies a corner of a 
completed cube (eight occupied corners), which has at most half (three out 
of six) of its faces exposed. A face of a cube is exposed if it is not shared 
by two completed cubes. 

For  the purpose of illustration, a similar SOS condition on an 
analogous situation of a two-dimensional (2D) square-lattice crystal is 
depicted in Fig. 1. The crystal consists of the black circles and its surface 
satisfies the SOS condition along the (11) direction (the vertical direction 
in the figure). Occupation of site A (shown by a white circle) in the crystal 
at this time would violate the SOS constraint, as it would not correspond 
to the completion of a new square. Occupation of sites B and C would 
result in a completed square, but is forbidden since this square would have 
three "faces" exposed--more than half of its (four) faces. Likewise the four 
sites D, E, F, and G cannot be occupied, despite forming a completed 
square, as four - -more  than half--of  its faces would be exposed. 

[.# / / ' 

r :<, .N "<" ,z ,~, , zE , :  ,~, -z ";-.;.~ " ' , ,  N.~b';,~i" ";~)t')( ";-( "?( ; ;(  ";::: ! 

Fig. 1. Example of a two-dimensional square-lattice crystal (the black circles) obeying a 
solid-on-solid (SOS) restriction along the (11) direction. The sites denoted by open circles 
would violate the SOS condition if occupied at this time. 
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This 2D crystal under the SOS constraint can be viewed as a stack of 
squares on (11) substrate line. Similarly, we can view the three-dimensional 
(3D) SC crystal considered here as a stack of cubes on the (111) substrate 
plane. It is also evident that the surface of the SC crystal consists of a 
singly-connected piece made up of three types of cube faces: namely, 
squares oriented normal to the (100), (010), and (001) directions, as shown 
in Fig. 2a. Projection of the surface atoms onto the (111) substrate plane 
will always give rise to a 2D triangular lattice. Figure 2b shows such a pro- 
jection of the surface configuration of Fig. 2a. The sites of the 2D triangular 
lattice are given by the vertices of the rhombic tiles in Fig. 2b, with each 
rhombus corresponding to the projection of a square on the surface of the 
crystal (i.e., of an exposed face of a cube on the stack). The three unit vec- 
tors 51 = (100), 62 = (010), and 6 3 ~- (001) are mapped under this projection 
onto three vectors ~l, c~ = 1, 2, 3, lying at 60 ~ to one another. Two of these 
vectors can be taken as basis vectors for the triangular lattice. 

We measure height along the (111) direction, so that a surface point 
having coordinate R 3 = Z ~ - l  n~6~ will have a height above the (111) sub- 
strate plane given by the integer function 

3 
h(x)= (:) 

- 5~ 3 n = 6 ~ .  It where the projection of R onto the substrate is given by x -  ~= 1 
should be clear that the SOS restriction renders the height a single-valued 
function of position x in the substrate plane. 

(o 

(o 

( a )  (b )  

Fig. 2. (a) A cube stack obeying an SOS condition along the (111) direction: only (001), 
(010), and (100) faces of the cubes may be exposed. Growth at an eligible site such as A 
corresponds to the addition of an atom at site A', resulting in the addition of a new cube onto 
the stack. (b) The rhombic tiling obtained by projecting the cube stack onto a (111) substrate 
plane. The entire surface configuration can be represented by two-state Potts variables (open 
and closed circles) residing on the vertices of the underlying two-dimensional triangular 
lattice. A rhombus edge indicates a satisfied antiferromagnetic bond between two neighboring 
sites. Two sites connected by such a bond have a relative height difference of A h  = +_1. 
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Note that under the above projection, all of the sites of the SC crystal 
will collapse onto the 2D triangular lattice, but since there will always be 
a one-to-one correspondence between the surface sites of the crystal and 
the vertices of the triangular lattice, we may deal exclusively with the pro- 
jected surface sites, and in that respect sites of the SC crystal not belonging 
to the surface play no further role on the projected lattice. 

As can be seen from Fig. 2, the tiling configuration of rhombi directly 
reflects relative surface heights. Two neighboring sites on the 2D substrate 
lattice (Fig. 2b) connected by the edge of a rhombus indicates a height dif- 
ference of one unit between the sites. Absence of such a r.hombic edge 
between two neighboring sites implies a height difference of two units. That 
only these two possibilities exist between any pair of neighboring sites on 
the 2D lattice is a direct consequence of the SOS restriction. To be more 
precise, let x / a n d  xj be any two such neighboring sites of the 2D lattice, 
which are thus related by xi--xj=a~ ~ for some eE {1, 2, 3} and a =  1 or 
- 1 .  Then, for a = 1 (a case which we shall henceforth refer to as i being 
a "principal" neighbor of j) ,  the height difference Ah•= h ( x i ) - h ( x j )  may 
only be 1 or - 2 ,  while for a = - 1  (i is a "nonprincipal" neighbor of j) ,  
Ahis = - 1  or 2 only. The case ]Ahq[ = 1 in fact indicates that on the original 
surface, sites i and j were nearest neighbors and thus were connected, while 
]Ahu[ = 2 indicates that they were not. 

In the growth algorithm considered here, we demand that the SOS 
condition be dynamically preserved. Thus, deposition of an atom at a sur- 
face site is possible only if it corresponds to the addition of a new cube 
onto the existing stack. All but the last vertex of this cube are sites on the 
original surface, and precisely 3 of the 6 faces of the cube must make con- 
tact with the stack. This process can be understood with the.help of Fig. 2a. 
Site A represents a surface site onto which a new atom can be placed at A', 
thereby adding a new cube to the stack. The new surface site A' has the 
same projection onto the (111) substrate plane as that of site A, but its 
height is 3 units higher. The reverse process of evaporation ( A ' ~  A) is 
possible only if it corresponds to the removal of a cube which has precisely 
three exposed faces. This decreases the surface height at the corresponding 
substrate lattice site by 3 units. The growth velocity of the surface is 
controlled by two rates: p+ for deposition (addition of a cube) and p for 
evaporation (removal of a cube). 

Every stacking event (growth or evaporation at a site on the stack's 
surface) must maintain the SOS requirement and this means that the num- 
ber of exposed faces on the stack will always be conserved: an added cube 
must cover (make contact with) three exposed faces of the stack, but at the 
same time its three remaining faces will be exposed; on the other hand, a 
cube which is removed can only be one with three exposed faces, and once 
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it has been removed, the three faces with which it made contact in the stack 
will be exposed. Hence, on the projected 2D triangular lattice, the number 
of rhombi will always be conserved. 

In the following we discuss a two-state Potts spin representation (i.e., 
a spin-l/2 Ising model) of the surface configurations and the growth rules 
which render a multisite-coding algorithm possible. 

As has already been noted by B16te and Hilhorst, (13) any rhombic 
tiling (or "diamond covering") of the lattice can be represented as a ground 
state of the 2D triangular antiferromagnet: the edges of the rhombi 
correspond to a satisfied (antiferromagnetic) bond between the two con- 
nected sites, while the absence of an edge between two neighboring vertices 
indicates that there is a frustrated bond between those sites. Thus, we can 
introduce two-state Potts variables a(x~)= 0 or 1 at each vertex x~ of the 
lattice such that for any pair of neighbors (x~, xj), a(x~) r a(xj) signifies a 
satisfied bond between xi and xj, and a(x i )=  ~(xj) indicates a frustrated 
bond. The lower right-hand part of Fig. 2b shows the Potts variables (open 
and closed circles) corresponding to the projected surface configuration of 
Fig. 2a. 

Using this representation, the height difference between two neigh- 
boring substrate sites can be expressed as 

~ h  _-- h(,,~ + ~J)  - h( , , i )  = 1 - 36 { ~(, , ,) ,  a ( , , i  + ~2)}  (3) 

where c~{x, y} = 1 if x = y and 0 otherwise. 
To see that the above scheme can be carried out self-consistently, we 

consider the explicit mapping 

a(xi) = h(xi) mod 2 (4) 

That (3) and (4) are consistent can be seen by considering two neighboring 
sites x i and xj_--xi+ ~F on the 2D lattice. Their relative height difference 
may only be zIh-~h(xj)-h(xi)=l or - 2 .  If Ah=l, then a (x i ) r  
while if Ah = -2 ,  then a(x~)= a(xj), in agreement with (3). 

There is a special constraint on {or} which corresponds to a single- 
valued height function. Around any elementary triangular plaquette of the 
lattice (which is formed by taking each of the three principal vectors e~ as 
its sides) there must be precisely two satisfied bonds and one frustrated 
bond, since, of course, we must have no net height change on returning 
around the loop (as indeed must be the case on returning around any loop 
on the lattice). That is, we must have Ah= +1 occurring twice and 
z/h = - 2  once (assuming, without loss of generality, that we traverse the 
plaquette clockwise, following the ~ ) .  In terms of the Potts variables, out 
of the three vertices on the plaquctte, there must be two of one kind and 
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one of the other. This constraint of precisely one frustrated bond around 
any elementary plaquette is equivalent to the statement that any valid 
Potts configuration for this model must be an antiferromagnetic ground 
state. 

We now describe the kinetic growth rule in terms of the Potts 
variables. We have already seen above that in order to preserve the SOS 
condition during growth, only surface sites (i.e., corners of the cubes) 
which are connected to other surface sites of a higher height may grow, and 
that growth then corresponds to the addition of a cube onto the 3D stack. 
This condition for a site to be eligible for growth translates to the 2D lat- 
tice as follows. Between the site in question and each of its three principal 
neighbors there must be a satisfied bond, as a frustrated one would imply 
a height decrease of 2 on going from the site to its neighbor. Similarly, 
between the site and its other three (nonprincipal) neighbors there can be 
no satisfied bond, as that would indicate a height decrease of 1. Thus, a site 
is eligible for growth if and only if it has the same spin as all of its three 
nonprincipal neighbors and has a spin opposite to those of its three prin- 
cipal neighbors. Due to the constraint around any triangular plaquette that 
we must have two spins of the same type and one of the other type, it is 
in fact sufficient to check that the three nonprincipal neighbors have the 
same spin as the central site, for if this is the case, then the three principal 
neighbors must have the opposite type of spin. 

Growth at the eligible site is then simply achieved by flipping the spin 
cr i ~ 1 - a i ,  as then the height at that site will change from being two less 
that its three nonprincipal neighbors (and one less than its three principal 
neighbors) to being one more (and two more than the principal neighbors). 
Hence the height change will be Ah = 3. This growth of a site is indicated 
in Fig. 3 in the left to right direction (with the three nonprincipal neighbors 
being denoted by open circles). Evaporation is simply the reverse of this 
procedure: we must check that a site has a spin identical to all of its prin- 
cipal neighbors, and if so, it is then flipped, producing a height decrease of 
3 (right to left in Fig. 3). 

Thus, using this mapping onto a 2D triangular lattice, only the surface 
of the crystal need be stored, and furthermore, the state of each vertex of 

Fig. 3. The local updating procedure for the central site on the two-dimensional triangular 
lattice. Potts variables are denoted by open (a = 0) and closed (a = 1) circles. Heavy lines 
denote satisfied bonds, dashed lines denote frustrated bonds. Deposition takes place at a rate 
p+ going from left to right. Evaporation, at a rate p , is in the opposite direction. 
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this 2D representation, being a two-state Potts variable, only requires one 
bit of information. This is in sharp contrast to the perhaps more 
straightforward projection of the 3D crystal down the, say, (001) direction. 
It would still be possible to employ a spin representation on the projected 
lattice if a restricted SOS constraint were imposed, (14~ i.e., if relative surface 
heights between neighboring points were restricted to being within some 
range 0, 1,..., M. The spins would, however, have to reside on the interstitial 
bonds and, furthermore, each such spin would require 2 M +  1 possible 
values (as both negative and positive height changes must be accounted 
for). For  the case of the SC crystal here, the projected lattice would be a 
square lattice, and with two bonds per surface site, this would give rise to 
( 2 M +  1)2 possible states per surface site. In addition, growth at a single 
site would involve updating the state of all bonds connected to that site. 

We shall see below that this description employing Potts variables 
residing on the lattice vertices and producing satisfied and frustrated 
antiferromagnetic bonds has an obvious and useful generalization to higher 
dimensions. As the coordination number of a hypercubic lattice increases 
linearly with dimension, the advantage of our model over the 
straightforward approach is even greater in higher dimensions as far as 
multisite coding is concerned. 

3. M U L T I S I T E  C O D I N G  OF T H E  2D  M O D E L  

There is obvious scope for parallelism in the model described above, 
as the lattice may be subdivided into three sublattices (as shown in Fig. 4) 
in such a way that the updating of any site on a given sublattice only 
requires knowledge of sites residing on one of the other two sublattices. 

In fact, these three sublattices have a natural interpretation with 
respect to the original surface: for each sublattice s ( =  1, 2, or 3) the height 

1 2 3 I 2 3 

Fig. 4. The natural sublattice structure o[ the two-dimensional substrate lattice. To update 
any site on, e.g., sublattice 1, only sites of sublattice 3 need be consulted in the case of deposi- 
tion, while for evaporation, only sites on sublattice 2 are required. 
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of any site is of the form hl  s~ = 3n + s for some integer n. This follows first 
from the fact that between any site i and any of its six neighbors j, 
A h u =  -t-1 or + 2  only. Second, any path between two sites on the same 
sublattice can be broken down into pairs of successive steps along a prin- 
cipal vector and against a principal vector--such a double step can only 
result in a height change of - 3 ,  0, or 3. It is obvious that the dynamics 
preserve this property, too, since the growth (evaporation) of a site results 
in a height change of 3 ( - 3 )  at that site. 

This subdivision together with the single-bit variables at each vertex 
makes the simulation of this system ideally suited to a multisite coding (15~ 
implementat ion--a technique which has already proved to be powerful in 
other applications both in terms of speed and in efficient use of computer 
memory. 

With regard to the deposition rate p + (and equivalently, the evapora- 
tion rate p ), we could not, of course, implement the deterministic version 
p + = 1 while utilizing such a sublattice updating scheme whereby all of the 
sites on a given sublattice are updated simultaneously: this would ignore 
completely the stochastic nature of the problem. In particular, an initially 
flat surface, such as the one employed in our simulations (see below), 
would remain indefinitely flat for p + = 1. However, choosing a p + less than 
one (and not too close to it) should suffice to avoid such problematic situa- 
tions arising. For  reasons of speed, we chose p + = 1/2, as will be explained 
in more detail below, so that on average half of the sites in a given 
sublattice were allowed to grow. In Section 5 we present results of our 
simulations, which are in excellent agreement with exact results and we 
take this as confirmation of the validity of these assumptions. 

We simulated a rhombic system of size L x L with periodic boundary 
conditions. Our initial configuration corresponded to a flat surface, as 
shown in Fig. 5. This has an average orientation along the (111) direction 
and with periodic boundary conditions this required the system size L to 
be a multiple of 3. In view of this and in order that we might also deal with 
smaller system sizes, the Fortran implementation of the multisite coding 
allowed for a variable number N~ of sites stored in each integer, each two- 
state Potts variable (spin) requiring only one bit of s torage--that  is, N B 
was not necessarily as large as the number of bits in a computer word, so 
on the Cray, for instance, N8 ~< 64. Thus, each row of L lattice sites could 
be accommodated in M = - L / N ~  integers IS(l),  IS(2),..., IS(M). The first M 
spins were stored in the first bit of each of these M integers, the next M 
spins in their second bit, and so forth. In other words, the N B bits of the 
integer IS(i) contained the spins at sites i, i + M, i + 2M,..., i + (NB -- 1 ) M. 
Similarly, the next row of the lattice was held in the M integers I S ( M +  1) 
to IS(2M). In fact, in order to realize the periodic boundary conditions in 
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Fig. 5. Initial spin configuration corresponding to a flat surface with average orientation 
along the (t11) direction (normal to the figure). 

the up-down direction, the first M integers of the array IS were used as a 
shadow row at the top of the lattice, IS (M+ 1) through IS((L + 1)M) con- 
tained the L rows of the actual lattice, and a final row of M integers 
IS((L+ 1 ) M +  1) to I S ( ( L + 2 ) M )  shadowed the first row of the actual 
lattice. 

Except for the "leftmost" sites [belonging to the integers IS(M+ 1), 
IS(2M+ 1),...] and the "rightmost" sites [belonging to IS(2M), IS(3M),...] 
the six nearest neighbors of a site stored in the bth bit of the integer IS(i) 
will be found in the same (bth) bit of the integers IS( i -1) ,  I S ( i - M ) ,  
I S ( i - M +  1), IS(i+ 1), IS(i+ M), and IS(i+ M -  l) as depicted in Fig. 6. 

For the exceptional sites in the "leftmost" words M + 1, 2 M +  1 .... an 
exceptional loop is additionally required, since to obtain the correct 
neighbors on the left, in place of the integers I S ( i -  1) and IS(/+ M -  1), 
we must instead use the integers I S ( / -  1 + M) and IS(/+ 2 M -  1 ), but sub- 
jected to a shift to the left by one bit. This shift also automatically accounts 
for the left-right periodic boundary conditions of the whole lattice. 

" / - ~ / ~ ~ - M +  

Fig. 6. Apart from the exceptional "leftmost" and "rightmost" words, the six nearest 
neighbors of a site stored in the bth bit of word i will be found in the same bth bit of each 
of the words shown. 
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Similarly, we need an exceptional loop for the sites residing in the 
"rightmost" integers at 2M, 3M, .... 

The Fortran code for sweeping through the lattice with growth is 
described below. NSUBS is the number of sublattices, each of which is 
stored in NSITES words. ISUB labels the currently active sublattice and 
the array INDEX(ISUB, J) is used for stepping through each Jth word of 
the ISUBth sublattice. The updated lattice variables are held in the array 
ISNEW. 

DO 100 ISUB = 1, NSUBS 
IF (M.LT.3) GOTO 101 
DO 110 J = 1, NSITES 
I = INDEX (ISUB, J) 
IGRW = AND (EQV(IS(I), I S ( I - 1 ) ) ,  AND (EQV(IS( I -1 ) ,  

IS(I + 1 - M)), 
EQV(IS(I + 1 - M), IS(I + M)))) 

NRNDS = NRNDS + 1 
110 ISNEW(J)=  XOR(IS(I), AND (IGRW, RG(NRNDS)))  
101 CONTINUE 

The growth probability of p+ is achieved by ensuring that in each 
element of the array RG, the bits are set with probability p+. We chose 
p+ = 0.5, as this is very easily and efficiently realized: each RG(i) is simply 
set to a random integer in the range - 2  (" 1) to 2 (n 1)_ 1 inclusively, 
where n-bit integers are employed, implying that each bit of the integer is 
set independently with probability 1/2. Thus, assuming NB = 64, one ran- 
dom number generation immediately delivers 64 bits set with probability 
p + =  1/2, whereas setting each bit separately would require 64 random 
number generations. In Table I we compare our results with this much 
slower procedure whereby the bits of each RG(i) are set individually using 
separate random number generations. It can clearly be seen that both sets 
of results are statistically indistinguishable, confirming the validity of our 
procedure. 

Other values of p + require more than one random integer generation: 
e.g., if I1 and I2 are two such randomly generated integers, then the bits in 
the integer I 3 = A N D ( I I ,  I2) will be set with probability 1/4, while 
I4=OR(I1 ,  I2) has bits set with probability 3/4. In general, to obtain 
p + =  k/2 m, for any odd k between 1 and 2 m -  1, where m and k are 
integers, m random integers must be combined. 

Line l l0  then achieves the growth at a rate p+ = 1/2 of the NB sites 
stored in the Ith integer, by flipping the appropriate bits if growth is 
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Tablel .  Surface Width Data a t p  §  f o r L = 6 0 a n d  L = 1 2 0 U s i n g  
Two Different Random Number Generation Schemes a 
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L = 6 0  L - 1 2 0  

,2 W 2 

1 1.279(3) 1.277(3) 1.281(2) 1.279(3) 
2 1.313(4) 1.309(4) 1.312(3) 1.315(3) 
4 1.424(7) 1.423(6) 1.426(5) 1.431(6) 
8 1.57(1) 1.566(9) 1.570(9) 1.576(7) 

16 1.72(1) 1.71(1) 1.72(1) 1.72(1) 
32 1.88(2) 1.86(2) 1.88(2) 1.88(2) 
64 2.00(3) 2.00(2) 2.01(2) 2.04(2) 

128 2.11(3) 2.1t(3) 2.17(3) 2.16(3) 
256 2.20(4) 2.20(4) 2,27(4) 2.32(4) 
512 2.20(4) 2.17(4) 2.38(5) 2.44(5) 

1024 2.20(4) 2.23(4) 2.5t(7) 2.48(7) 

The data w] were obtained by the method described in the text, where all of the n bits of 
a word are set with probability 1/2 by setting the word to be a random integer uniformly 
distributed in the range - 2  ("-~) to 2 ("=l)- 1 inclusively. The data w~ are from the much 
slower procedure of setting each bit of every word with probability 1/2 using separate 
random number generations. The number of independent runs was I50 for L = 60 and 50 for 
L= 120. 

possible (i.e., if the appropr ia te  bit of  1GRW is T R U E )  and if it 'is allowed 
by the r andom number  mask RG. 

The main loop (100) continues with the two exceptional loops. 
Analogously to the updat ing loop 110, the number  of exceptional leftmost 
words is given by NEXL,  I N D X L  is used for stepping through the active 
sublattice words, and I S N E W L  holds the updated variables. 

- - E X C E P T I O N A L  L E F T M O S T  W O R D S - - -  
D O  120 J =  1, N E X L  
I = I N D X L ( I S U B ,  J) 
I T E M P  = C S M G ( S H I F T R ( I S ( I -  1 + M), N B -  1), 

S H I F T L ( I S ( I -  1 + M ) ,  1), 1) 
I G R W  = A N D ( E Q V ( I S ( I ) ,  I T E M P ) ,  A N D ( E Q V ( I T E M P ,  

IS(I  + 1 -- M)), 
EQV(IS ( I  + 1 - M), IS(I  + M)))  

N R N D S  = N R N D S  + 1 
120 I S N E W L ( J ) =  •  A N D ( I G R W ,  R G ( N R N D S ) ) )  

822/60/1-2-13 
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The CSMG (Cray Scalar MerGe) achieves the desired shift (a cyclic 
shift with respect to the first N~ bits of the integer). Note that 
w = C S M G ( x ,  y, z) assigns w = x ,  where z has bits set (one) and w =  y, 
where z has bits reset (zero). This can be expressed in logical operations as 
w = OR{AND(x,  z), AND(y,  NOT z)}. If NB is equal to the number of 
bits in the computer word, then this merge can be replaced by a simple 
cyclic shift with respect to the whole word. 

The loop for the exceptional rightmost words is similar, the updated 
variables are stored in ISNEWR, and the required shift is given by 

I TEMP  = CSMG(SHIFTL(IS( I  - M2 + 1 ), NB - 1 ), 
SHIFTR(IS(I  - M2 + 1 ), MSK) 

where MSK is an integer with only the NBth bit being set and M2 = 2M. 
If evaporation is also to be included, it must be carried out next, 

before setting IS = ISNEW at the appropriate sites of the active sublattice 
ISUB. The loops for evaporating the sites with probability p -  are very 
similar to the above. There a random number array RE must have each of 
its bits set with probability p -  and an evaporation flag IEVP is calculated 
in an analogous fashion: 

IEVP = AND(EQV(IS(I) ,  IS(I - M)), AND(EQV(S(I  - M), 
s(I + 1)), 
EQV(IS(I + 1), I S ( I -  1 + M))))  

NERNDS --- NERNDS + 1 
IEVP = AND(IEVP, RE(NERNDS))  
ISNEW(J)  = CSMG(XOR(S(I) ,  IEVP), ISNEW(J), IEVP) 

We similarly require two exceptional loops to take care of the sites 
residing in the exceptional rightmost and leftmost integers. Then the sites 
of the active sublattice are refreshed using ISNEW: 

DO 200 | = 1, NSITES 
200 IS(INDEX(ISUB, I)) = ISNEW(I)  

DO 210 I =  1, NEXL 
210 IS(INDXL(ISUB, I)) = ISNEWL(I)  

DO 220 I = 1, NEXR 
220 IS(INDXR(ISUB, I)) = ISNEWR(I)  
C - - - T A K E  CARE OF U P - D O W N  BOUNDARY C O N D I T I O N S - - -  
C (LM = L , M )  
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CDIR$ IVDEP 
DO 3 0 0 I = 1 ,  M 
IS( I+  M + L M ) = I S ( I  + M) 

300 IS(I) = IS(I + LM) 
100 CONTINUE 

(The CDIR$ command is a compiler directive, which informs the compiler 
that the vector dependence following in loop 300 is to be ignored.) 

The above updating loops fully vectorize and for the pure deposition 
case, p + = 1/2, p -  = 0, speeds of over 330 million updates per second were 
achieved for L > 1000 on one Cray X-MP/416 processor, including all the 
necessary random number generations each sweep. For the largest system 
that we simulated, L = 11520, over 2.76 million 64-bit words were required 
for the storage of the lattice variables IS, ISNEW, ISNEWL, and ISNEWR 
alone and each run consisting of 4096 complete sweeps of the lattice only 
took approximately 30 min of processor time. 

4. THE M O D E L  IN HIGHER D I M E N S I O N S  

The model presented above can in fact be generalized to higher dimen- 
sions. If ~ (cr = 1, 2,..., d +  1) are the d +  1 unit vectors of a (d+  1)-dimen- 
sional hypercubic crystal lattice, then when we project onto a d-dimen- 
sional surface lying normal to the (11...1) direction, we obtain d +  1 projec- 
ted vectors ~ (cr 2,..., d +  1). These vectors are, of course, linearly 
dependent and satisfy ~2~+_] ~l = O. The projected d-dimensional lattice can 
be defined by using d of the ~l as basis vectors. A point R = ~a_+ 1 n ~  on 

_ va+~ n ~  on the d-dimensional lattice and the surface has projection x -  z..~= 
has height 

d + l  

h(x)= (5) 

above the (11... 1 ) substrate plane. 
Once again, due to the SOS restriction along the (11...1) direction on 

the growth of the original surface, there is a one-to-one mapping of points 
on the surface to points on the projected lattice, and, as before, two 
neighboring sites were either connected on the original surface, in which 
case their relative height difference is A h  = • 1, or they were not, implying 
A h  = -T-d. Hence, once more we may denote these two possibilities by con- 
necting the sites by a satisfied (antiferromagnetic) bond if IAhl = 1 and by 
a frustrated bond otherwise. 

Now around any elementary plaquette of the lattice (see Fig. 7) there 
can be no net height change, implying the existence of one satisfied bond 
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,h-(a+l) I r a . G 1  

- ' ~ "  - ~  r 2,h-d 

t ~ d + l  , h  

_ ~ a  3,h-d+l 

. .-" 

 a-l,h-2 
Fig. 7. An elementary plaquette of the d-dimensional substrate lattice is formed by taking 
each of the projected vectors ~ tail-to-tail. Every such loop must contain precisely one 
frustrated bond (the dashed line) and d satisfied bonds (the heavy lines). Each of the d +  1 
sublattices is visited once on traversing the loop. The height of a site on the sth sublattice is 
n(d+ 1)+ s for some integer n. Here aj = ~1 + J - 1  (rood d) for each j = 1 ..... d + 1. 

Ah = - d  (assuming we traverse the plaquette in the direction of the ~ ) ,  
and d frustrated bonds, Ah = 1. Such a configuration could not be realized 
by two-state Ports variables residing on the lattice vertices (unlike the d = 2 
case above): instead, these must also be generalized to (chiral) d-state 
Potts variables ~(xi) ~ {0, 1, 2,..., d -  1 } with a(xi) = ~r(x~ + ~ )  - l(mod d), 
signifying a satisfied bond between sites xf and xi+~12, and a(x~)r 
~r(xi+ ~ ) - l ( m o d  d) a frustrated one. Then the relation (3) generalizes to 

A h = h ( x ~ + ~ ) - h ( x z ) = l - ( d + l ) 6 { a ( x i ) , a ( x ~ + ~ ) }  (6) 

with the Ports variables being assigned by 

a(xi) = h(xi) rood d (7) 

As before, Ah= 1 must imply ~ ( x ~ ) r  while if A h = - d ,  then 
~(xi) = a(x~+ ~m), showing the consistency of (6) and (7). 

We saw above that any 2D surface configuration, when projected onto 
the substrate lattice corresponded to a ground state of the 2D triangular 
antiferromagnet. In general, any surface configuration of the (d + 1)-dimen- 
sional model when projected onto the d-dimensional (11...1) substrate 
plane and represented by the mapping (7) will be a ground state of a chiral 
Potts model whose Hamiltonian is given by 

H--  - Z  + 1, (s) 

where 6{i, j} = 1 if i = j ( m o d  d), and 0 otherwise. 
A particular feature of the mapping (7) is that the Potts variables on 

two neighboring sites connected by a frustrated bond (a height difference 
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of d across) are actually identical. Thus, for any site x i and its principal 
neighbor x j = x i + ~  we have either a(xi)=rr(xj) or a ( x i ) = a ( x j ) - I  
(rood d). That this is also a property of ground-state configurations of the 
chiral Potts model defined by (8) can be seen with the help of Fig. 7. 
Represented in the figure is an elementary plaquette of the d-dimensional 
substrate lattice, which is formed by adding the d+  1 projected principal 
vectors 8~1 tail to tail. Assume, without loss of generality, that the one 
frustrated bond of this loop occurs between the sites denoted by ad+ 1 and 
as. Then across all other bonds we must have a j + l = a j + l  (mod d), 
j = 1, 2,..., d+  1. In particular, ~rd+ ~ = a, + d (rood d) = a~. In the following 
discussion we shall always restrict ourselves to the ground-state configura- 
tions of the chiral Potts model (8), and hence assume ~r,=aj for the 
frustrated bonds. 

As with the d=  2 case, a site may only grow if its height is less than 
that of all of the neighboring sites to which it is connected (i.e., to which 
it has a satisfied bond). This can only hold if it has satisfied bonds with 
each of its d+  1 principal neighbors (giving a height decrease of 1) and has 
frustrated bonds with each of its d+  1 nonprincipal neighbors (a height 
decrease of d). In other words, the Potts variables at that site must be the 
same as each of the nonprincipal neighbors and one less (rood d) than those 
of the principal neighbors. It is again sufficient to check only the former of 
these two requirements, for the following reason. If we already have 
frustrated bonds between the site in question and each of the d+  1 non- 
principal neighbors, then for each such neighbor we can form an elemen- 
tary plaquette which returns to the central site through a principal 
neighbor. As we already have a frustrated bond in this loop, the other d 
bonds must be satisfied, which includes the bond between the central site 
and the principal neighbor through which we have returned. By symmetry, 
the argument applies to all d+  1 principal neighbors. Consequently, there 
must be satisfied bonds between the site and each of its principal neighbors. 

The deposition process of rate p+ then consists in increasing the 
height of an eligible site by d+  1, which, in terms of the Potts variables, 
consists in changing a ~ cr + 1 (mod d). Evaporation at rate p -  consists in 
checking whether ~r at the given Site is identical to those of the four prin- 
cipal neighbors and, if so, a--+ a - 1  (rood d) with probability p- .  This 
results in a height decrease at the site by an amount d+  1. 

Just as for the d=  2 case, the whole (d+ 1)-dimensional crystal may be 
viewed as a stack of (d+ 1)-dimensional hypercubes on the (11...1) sub- 
strate hyperplane and the SOS restriction along the (11...1) direction is 
equivalent to demanding that at most (d+ 1) of the 2(d+ 1) faces of each 
hypercube may be exposed (i.e., may be part of the surface). A stacking 
event consists in adding a hypercube to the stack at a rate p+ (deposition) 



198 Forrest and Tang 

or removing a hypercube at a rate p -  (evaporation). This must maintain 
the SOS condition, which implies that the number of exposed (d-dimen- 
sional) faces must be conserved, whence the addition of a hypercube is only 
allowed when d + 1 of its faces make direct contact with exposed faces in 
the stack. Similarly, a hypercube may only be removed if it has precisely 
d +  1 exposed faces. 

The natural underlying structure of three sublattices which we pointed 
out in the d =  2 case also generalizes to d +  1 sublattices in d dimensions. 
The sublattices are revealed by noting that we may cover the lattice with 
elementary plaquettes. Then on each plaquette we have one site belonging 
to each of the d +  1 sublattices and the 2 (d+  1) nearest neighbors of a par- 
ticular site belong to different sublattices from that of the site. Further- 
more, the d +  1 principal neighbors all belong to a common sublattice and 
the d +  1 nonprincipal ones all belong to another. Each such plaquette 
consists of one frustrated and d satisfied bonds. 

Consider once more the representative elementary plaquette shown in 
Fig. 7 and assume that the site denoted by ad+ 1 has a height h. Then across 
the frustrated bond the site denoted by el will have a height h - ( d +  1). 
Continuing around the elementary plaquette, only satisfied bonds remain, 
so the heights of the other sites are h - d, h - d + 1,..., h - 1. We then have 
that on each sth sublattice the heights take the form hlS)=n(d+ 1 ) + s  for 
some integer n. 

We now proceed to describe the particular case of d = 3, which we also 
have simulated. There the four unit vectors of the 4D hypercubic lattice are 
mapped onto 4 vectors forming a tetrahedron in 3D, thus giving rise to a 
body-centered cubic (BCC) lattice (see Fig. 8a). For  the simulation we 

3 

(a) 

Fig. 8. (a) The four projected unit vectors ~ of the 4D hypercubic lattice. The projected 3D 
substrate lattice is revealed by taking 3 of these vectors as basis vectors, producing a body- 
centered cubic (BCC) lattice. (b) The local updating rule on the BCC substrate lattice for 
deposition (left to right at rate p+)  and evaporation (right to left at rate p - ) .  The cubes 
shown here serve only as a guide to the eye. 
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employed two sublattices, corresponding to the two interpenetrating 
simple, cubic (SC) lattices of which a BCC lattice is composed. Thus, each 
of our simulation sublattices contained two of the sublattices elucidated 
above. The deposition (p +) and evaporation (p- )  processes are shown in 
Fig 8b. 

One-bit-per-site multisite coding was, of course, not possible in this 
case--we had instead to use two bits per site, since we were dealing with 
3-state Potts variables. We do not describe in detail the Fortran code for 
this case, but only point out the main features. 

The two interpenetrating SC lattices of size L x L x ~ l a b e l e d  A and 
B, with A being half a layer above B--were stored in separate pairs of 
arrays: the A lattice in AR and AL and the B lattice in BR and BL. Here 
L and R denote respectively the left and right bits of the binary representa- 
tion of the Potts variables. That is, the two bits representing each ~r 
residing on lattice A (resp. B) were accommodated in the same (say) bth 
bit of AL(i) and AR(i) [resp. BL(i) and BR(i)] for some element i. Then, 
apart from this need to use two bits for each ~, the multisite coding 
followed in spirit that of the d--2 case: each L x  L layer of each SC 
sublattice was accommodated in a total of L + 1 rows of M = L / N B  pairs 
of integers, an additional top (resp. bottom) row being required in each 
layer to invoke the periodic up, town boundary conditions on the A 
(resp. B) subtattice. In addition, to fulfill the boundary conditions between 
the uppermost A layer and the lowermost B layer, the A sublattice required 
an additional shadow layer on the bottom and the B sublattice an additional 
shadow layer on the top. Thus, in all, each sublattice was stored in a total 
of 2(L + 1)2M integers. For each update, any site of sublattice A only 
referred to sites of B and vice versa. Hence, the loops over all the sites in 
a given sublattice could be vectorized. As before, additional loops (one for 
each sublattice) were also needed to take account of the exceptional words. 

The necessary bit operations at the heart of the growth and evapora- 
tion processes should be clear from Table II: for a site which can grow, the 
new left and right bits will be respectively L' = R  and R' =EQV(L, R), 
where EQV is the bitwise logical equivalence operation. Specifically, if the 
word IGRW has each bit set according to whether the corresponding sites 
are eligible for growth (including the growth probability p+), then a 
growth update on all the sites in the Ith pair of words of sublattice A is 
achieved simply by 

ARNEW(I) = CSMG(EQV(AR(I), AL(I)), AR(I), IGRW) 
ALNEW(I) = CSMG(AR(I), AL(I), IGRW) 

and similarly for sublattice B. For evaporation, the updating procedure is 
L" = EQV(L, R) and R" = L. 
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Table II. 

Forrest and Tang  

Binary Representation Used in Multisite-Coding Implementation 
of the d = 3  M o d e l  ~ 

Potts Binary After After 
variable representation growth evaporation 

~A AL AR ~ AL' AR'  cr~ AL" AR" 

0 0 0 1 0 1 2 1 0 
1 0 1 2 1 0 0 0 0 
2 1 0 0 0 0 1 0 1 

a L and R denote, respectively, the left and right bits of the Ports variable a = 0, i, and 2. 

As in the d =  2 case, the updating loops fully vectorized. For  L = 256, 
a rate of over 130 million updates per second per Cray X-MP/416 processor 
was achieved for the pure deposition case, p + =  1/2, p - = 0 ,  while the 
equilibrium case, p + = p -  = 1/2, reached 72 million updates per second. 

5. TEST OF THE A L G O R I T H M  

We have applied the above algorithm to systems of up to N =  L2 =  
115202 sites in the d =  2 case and N =  2L 3= 2 x 1923 sites in the d =  3 case 
to determine the roughness exponents and to investigate possible non- 
equilibrium roughening transitions. Details of this study will be reported 
elsewhere. (12) By setting p + =  p - ,  the model describes a local kinetic rule 
for the time evolution of a stationary (nongrowing) surface. An exact 
expression for the height-height correlation function in the two-dimen- 
sional equilibrium case of the model was derived by B16te and Hilhorst. (13) 
It seems to be worthwhile to test our algorithm and the implementation of 
it against this known result. This will be the topic of the remaining part of 
the paper. 

03) The exact result of B16te and Hilhorst indicates that the two-dimen- 
sional equilibrium surface is logarithmically rough due to thermal fluctua- 
tions, with a stiffness constant K = 2~/9. The equilibrium width of a surface 
of linear size L is then given by 

2 1 
W~q = ~ In L + const (9) 

Assuming that the steady-state distribution of our growth model at 
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Fig. 9. Scaling plot of mean-square surface width w 2 at p~ = p -  = 1/'2 as a funetion of time 
t for various system sizes L. All data collapse onto a common line, in agreement with the 
scaling form (10). 

p - = p  is the same as the infinite-temperature surface model, 4 we find 
that the equilibrium surface width in our model should have the same size 
dependence (6). In addition, we may expect a dynamical exponent z = 2 as 
in the theory of Edwards and Wilkinson (16) for surface growth models 
which are described by a linear Langevin equation. 5 Based on (9) and the 
observation that, starting from a flat surface at t = 0, the surface width at 
t <~ L 2 is independent of L, we may plausibly write 

w2( t) = (1 / : r rK)ln[Lf( t /L2)]  (to) 

where y ( x ) ~ x  L/2 for x < l  and goes to a constant  as x - + o o .  Thus, for 
t < L 2 we expect w2(t) ~- (1/2~rK) In t + const. 

Figure 9 shows our Monte  Carlo data at p + = p = 1/2 for five dif- 
ferent sizes L = 30, 60, 120, 576, and 5760 at t = 2 k, k/> 3. The exact value 
K =  2~/9 is used in making the scaling plot. Error bars on the data are 
much smaller than the plotting symbols. The data collapse is in excellent 
agreement with Eq. (10). 

4 One can show that an algorithm based on random selection of sublattices for updating 
satisfies the detailed balance condition. The sequential updating scheme adopted here may 
not fulfill this condition. Nevertheless, it may still generate the same steady-state distribution 
as in the first case. 

5 The absence of a nonlinear term in the Langevin equation for the equilibrium surface has 
been argued by Plischke et al. (6) 
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